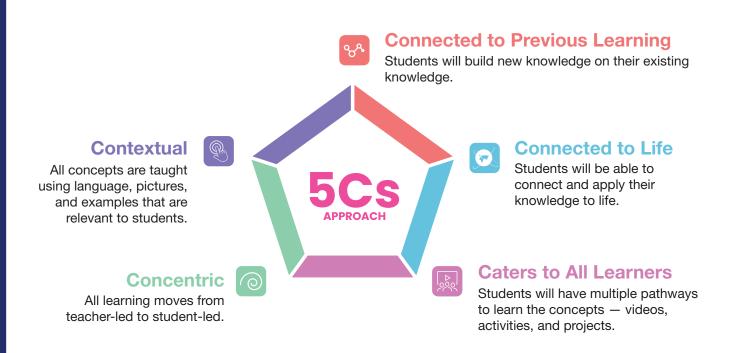
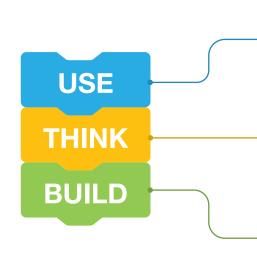

Dear teachers, the table below summarises the learning journey you will cover with your students this year.

Detailed Syllabus for the Year

The roadmap given below lists the units covered in each term. Term 2 units will be visible on the tab after the completion of MOY.

PART 1	Unit Name	USE Software/ Programming language	THINK Skills	BUILD Project
	1. Creating Your Own Apps	MIT App Inventor with emulator/Al2 companion	Creativity Decomposition Problem-solving Coding	Create the AudioNotes, AroundTheWorld and MyTranslator apps using App Inventor.
	2. Camping in the Wilderness	MIT App Inventor with emulator/AI2 companion	Decomposition Abstraction Problem-solving Coding	Create the VoiceClock and MyCompass apps using App Inventor.
	3. The Pythagorean Triple	Python (Introduction)	Critical thinking Mathematical thinking Algorithms Coding	Create a Pythagorean Triple simulator using operators and conditions in Python.
	4. Language of Computers	Python (Intermediate)	Logical thinking Coding Decision-making Abstraction	Create a binary to decimal and decimal to binary converter using Python.


PART 2	Unit Name	USE Software/ Programming language	THINK Skills	BUILD Project
	5. Tic-Tac-Toe	Python (Advance)	Creativity Coding Problem-solving	Create a single player Tic-Tac-Toe game using Python.
	6. Tic-Tac-Toe with Al	Python (Artificial Intelligence)	Creativity Coding Problem-solving Analysis	Create an Al based Tic-Tac-Toe game using Python.
	7. Tech Trivia	HTML and CSS	Visualisation Creativity Critical thinking Coding	Create a tech quiz website using HTML and CSS.


The LEAD Method

The tables below show the LEAD Method that you will be following with your students.

1. The 5 Cs : Every concept is taught using the 5 Cs approach.

2. Use-Think-Build (UTB): Every unit follows the UTB pedagogical approach.

The first step in the UTB approach is to have an immersive experience to introduce the project. Students interact with audiovisual media and use apps, games, or websites to visualise and experience the projects they will be creating.

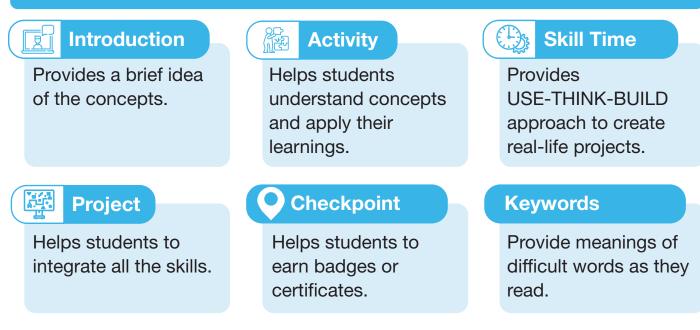
The second step is to THINK through independent and group activities and use computational thinking and logic to build the project. This helps in developing critical thinking, decision-making, design thinking, and problem-solving skills.

The third step is to apply the concepts learned in the USE and THINK sections to BUILD the project. Students will create real-life projects, such as artworks, publications, animations, apps, games, or websites, using age-appropriate, easy-to-use software.



The LEAD Method

3. Project—Based Learning: Students demonstrate skills such as abstraction, decomposition, visualisation, creativity, and problem-solving by building projects at the end of every unit.



Important Icons

Icons and Features of the Book

Students can access important resources at home by scanning these codes using the LEAD Student App.

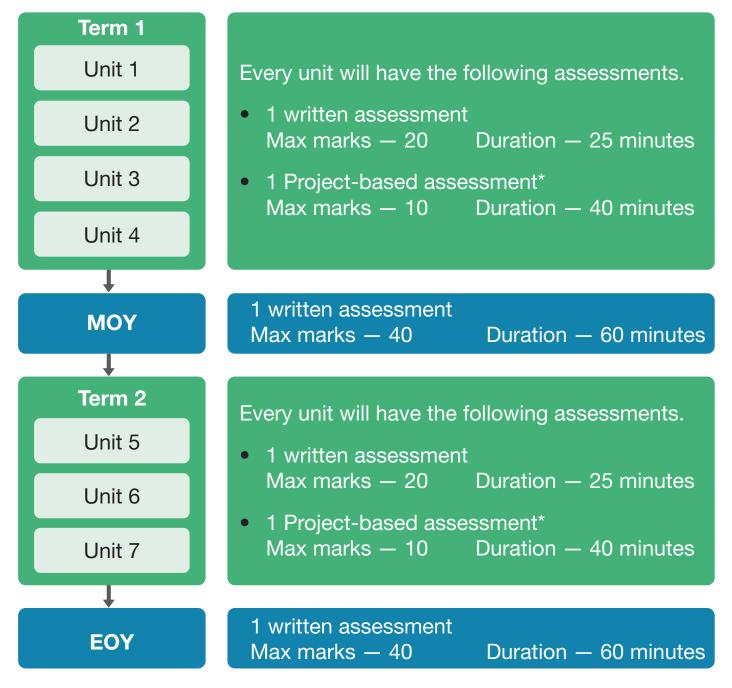
Red: to watch videos on various topics Blue: to read documents and learn concepts Green: to download badges and certificates

Icons and Features used in the Lesson Plans

Turn and Talk

Turn-Write-Pair-Share

Stop and Jot


Ensure that you use the routines and structures as mentioned in the plans to achieve excellence in each unit.

Resources called LCRs will help you understand these in detail. The LCR for each routine or structure will be mentioned under 'Preparation Needed' the first few times that routine is used.

Assessment Structure for the Year

The objective of the assessments is to check if all students have understood the concepts and can apply their learning. Based on the assessment data, it is very important to do strong remedial before progressing forward. The CCS curriculum prescribes and provides the following assessments.

Note: *This is in line with NEP 2020's recommendations to include computational thinking and project-based assessments from early years.

Assessment Framework

Unit Assessments

The written unit assessments will have the following structure.

Type of Question	Marks	Questions	Total Marks
Multiple choice questions	1	4	4
Very short answer questions — Fill in the blanks	1	4	4
Short answer questions	2	1	2
Short answer questions – Debug	2	1	2
Long answer questions — Coding	4	2	8
		12 questions	20 marks

MOY & EOY Assessments

MOY and EOY assessments will have the following structure.

Type of Question	Marks	Questions	Total Marks
Multiple choice questions	1	4	4
Fill in the blanks	1	4	4
Match the following	1	4	4
Short answer questions — Fill Go	1	4	4
Very short answer questions — Coding	1	2	2
Short answer questions	1	4	4
Short answer questions — Debug	2	2	4
Short answer questions — Coding	3	2	6
Long answer questions — Debug	4	2	8
		28 questions	40 marks

Note:

- In MOY 100% questions will be from Term 1 Units.
- In EOY 100% questions will be from Term 2 Units.

Project Evaluation Rubric

Duration: 40 minutes

Total marks: 10

Strand/Score	2 - Excellent	1.5 - Needs Improvement	1- Unsatisfactory	
Understanding	Student was able to understand the objectives of the project	Student partially understood the objectives and what needs to be created.	Student did not understand most of what was expected from the project.	
Design	Student was able to visualise and design elements of the project very well.	Student was able to visualise and design elements of the project to satisfactory levels.	Student was not able to design some of the elements of the project.	
Logic	Student was able to apply logical thinking to be able to solve the problem or steps required to create the project.	Student was partially able to solve the problem or apply the steps required to create the project.	Student was unable to think logically or apply the steps required to create the project.	
Output	The output was as per prescribed project description.	The output was partially achieved as per project description.	The output achieved was not as per project description.	
Completion and Time Management	Student was able to complete the project in the assigned time	Student was able to complete 75% of the project in the assigned time	Student was able to complete 50% or lesser of the project in the assigned time.	

Difficulty level of Questions

Difficulty level of questions in the assessments are categorised as per the table below:

	LOTS (Lower Order Thinking Skills)	MOTS (Middle Order Thinking Skills)	HOTS (Higher Order Thinking Skills)
Definition	Questions based on recalling knowledge	Questions based on applying skills in familiar scenarios	Questions based on applying skills in unfamiliar scenarios, analysing situations and building on top of what was taught in class.
Bloom's Level	Remember	UnderstandApply	Application (complex) • Evaluate • Analyse • Create
Note:	ASMs (Term 1 / Ter MOY / EOY	, , , , ,	• 50 (MOTS) • 20 (HOTS) • 50 (MOTS) • 20 (HOTS)

